

Autonomous pCO₂ measurements in seawater using SAMI-CO₂ (Submersible Autonomous Moored Instrument) on the Astan buoy system in the Western Channel, off Roscoff.

- T. Cariou¹, Y. Bozec², J.P. Gac², C. Guillerm³, E. Macé², P. Marrec⁴, M. Vernet².
- ¹ Sorbonne Universités, UPMC Univ Paris 06, CNRS, Fédération de Recherche (FR2424), Station Biologique de Roscoff, 29680, Roscoff, France.
 ² Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique de Roscoff, 29680, Roscoff, France.
- ² Sorbonne Universités, UPMC Univ Paris ⁴ Division technique de l'INSU, Plouzané,

³ Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France, 13288, Marseille, France,

The actual development of monitoring networks, in coastal areas, provides to the scientific community platforms to deploy and test new sensors. In 2007, the Marine Chemistry team, in Roscoff equipped the cardinal buoy of opportunity ASTAN (picture 1) (Western Channel) from the French "Maritime aids to navigation and lighthouse Authorities" with a full CTD system (temperature, salinity, D.O., fluorescence) and atmospheric sensors. Cycles measurements occur every 30 minutes. To complete the existing system, we installed in 2015 a pCO₂ sensor from Sunburst Sensors LLC (picture 2). This sensor uses indicator-based spectrophotometric method to measure the environment pCO₂ variations by diffusion through a membrane.

Principle :

The SAMI pCO₂ analysis is based on the colometric changes of a pH sensitive indicator solution (Bromothymol Blue). Aqueous carbon dioxide in seawater diffuses across the silicon membrane equilibrator (Fig. 2) and modifies the equilibrated indicator solution : $H^{\Gamma} \longrightarrow H^{+} + l^{2-}(\kappa_{a'})$ where H^{Γ} and l^{2-} are the protonated and unprotonated forms of the diprotic indicator, Ka' the apparent indicator equilibrium constant. The absorbance measurements are made at the absorbance maxima of H^{Γ} (434 nm) and l^{2-} (620 nm) (Fig. 1).

pH = pKa' + log([1²-]/[HI']) with [1²-]/[HI'] =
$$\frac{A_R - \frac{ec20a}{e434a}}{\frac{ec20a}{e334a} - A_R * \frac{e334b}{e334a}}$$
, A_R = A₆₂₀/A₄₃₄ and

 ε' s are ratios of the HI⁻ and I²⁻ molar absorptivities.

The instrument response $\text{RCO}_2 = -\log \left(\frac{A_R - \frac{6234\alpha}{\epsilon 434\alpha}}{\frac{\epsilon 620b}{\epsilon 434\alpha} - A_R \frac{\epsilon 633b}{\epsilon 434\alpha}}\right) = p\text{Ka}' - p\text{H}.$ The response RCO_2 is

therefore only dependent upon the molar absorptivities (ε 's) and absorbance ratio A_R. To calculate A_R, the optical absorbances at 434 and 620 nm are corrected by regular measurements of a blank solution (de-ionized water) at 740 nm.

UDWC

Picture 1 : Astan Buoy, off Roscoff - (© W. Thomas)

Picture 2 : SAMI installation under Astan Buoy - (© W. Thomas)

Calibration :

The SAMI response (RCO₂) is determined using a calibrated Li-COR (NDIR) CO₂ analyzer. Variable CO₂ gas concentrations are monitored in a thermostated chamber. The SAMI and NDIR data are combined to give a second-order polynomial calibration curve. RCO₂ = $a(logpCO_2)^2 + b(logpCO_2) + c$ (Fig.3). A temperature coefficient is also determined to correct the pCO₂ value at temperaure differing from the calibration temperature. Then, sensor values are compared to measurements in a bath using again the Li-COR (NDIR) CO₂ analyzer (Fig.4).

Seasonnal variability of seawater temperature, salinity and fluorescence. Astan Buoy - 2016

2016 - RESULTS

iulian dave - 2016

Fig, 12 : Fall seawater temperature, salinity and fluorescence variability

Fig, 7 : Winter pCO₂ and D.O. variability

<u>Conclusion</u>: Results obtained with SAMI and the other sensors highlight the dynamiscs of this ecosystem (Fig.5 to 12). The seasonal variability of the biogeochemical parameters of the coastal area is well captured by the system. SAMI allows to measure the amounts of pCO_2 of the natural environment which behaves like source or sink of carbon depending on the seasons (solubility or/and biological pumps). We can also notice the strong daily variability of the parameters influenced by the tidal currents.